Analysis Aufgabengruppe 2

Teil A

1.

a)
$$g(x) = \sin(-x)$$

b)
$$h(x) = \sin x + 2 \quad \checkmark$$

c)
$$k(x) = \sin(2x)$$
 \checkmark

2.
$$f(x) = e^x \cdot (2x + x^2)$$

a)
$$e^x \cdot (2x + x^2) = 0$$

$$\Leftrightarrow e^x = 0$$
 , oder $2x = -x^2$

$$\Leftrightarrow e^x = 0$$

$$\Leftrightarrow \text{ Keine L\"osung } \checkmark \text{ oder } 2x = -x^2$$

$$\Leftrightarrow \text{ oder } x = 0 \checkmark \text{ oder } x = -2 \checkmark$$

$$\Rightarrow$$
 Nullstellen: $x_1 = -2$; $x_2 = 0$

b) $F(x) = x^2 \cdot e^x$

es gilt:
$$F'(x) = 2x \cdot e^x + x^2 \cdot e^x = (2x + x^2) \cdot e^x = f(x) \checkmark$$
 $\Rightarrow F \text{ ist Stammfkt. von } f$

Allgemeine Stammfkt. von f: $F_a(x) = F(x) + a \text{ mit } a \in$

$$F_a(x) = F(x) + a \text{ mit } a \in$$

$$F_a(1) = 2e$$

$$1^2 \cdot e^1 + a = 2e$$

$$e + a = 2e$$

$$\Rightarrow a = e$$

$$\Rightarrow$$
 $G(x) = x^2 \cdot e^x + e \quad \checkmark \quad \checkmark$

3. Graph I

Wenn g im Intervall $-5 \le x \le 5$ zwei Wendepunkte besitzen soll, dann muss g" in diesem Intervall zwei **Nullstellen** mit **VZW** haben. $\sqrt{}$

Diese Bedingung erfüllt nur der Graph I.

4. Flächeninhalt des Rechtecks:

$$A(x) = x \cdot f(x) = x \cdot (-\ln x) \quad \checkmark$$

soll maximal werden:

$$f'(x) = x \cdot \left(-\frac{1}{x}\right) + \left(-\ln x\right) = -1 - \ln x \quad \checkmark$$

$$f'(x) = 0$$

$$\ln x =$$

Wirklich Maximum?

$$f'(x) = 0$$
 => $\ln x = -1$ => $x = \frac{1}{e} \checkmark$
 $f''(x) = -\frac{1}{x}$ $f''\left(\frac{1}{e}\right) = -e < 0$ => Rechtskrümmung

=> Maximum an Stelle $x = \frac{1}{2} \checkmark$

Seitenlängen dieses Rechtecks:

$$x = \frac{1}{e} \approx 0.37; \ y = f\left(\frac{1}{e}\right) = -\ln\left(\frac{1}{e}\right) = 1 \ \checkmark$$

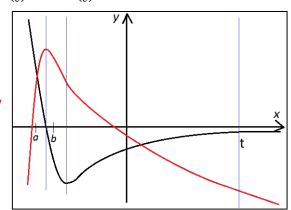
5.

a) Für $a \le x \le b$ steigt der Graph der Stammfunktion zunächst an und anschließend fällt der Graph. Die√ Stammfunktion hat also für ein $x \in]a; b[$ ein **Maximum**.

b) siehe Abb. rechts

wichtig: Maximum, Wendepunkt, konst. Steigung für

x > t



Seite 1 von 5

Teil B

1.
$$f(x) = \frac{20x}{x^2 - 25}$$

a) Für $x_1=-5$ und $x_2=5$ wird der Nenner des Funktionsterms null. Also sind x_1 und x_2 Definitionslücken. => $D_f = R/\{-5; 5\}$

es gilt:
$$f(-x) = \frac{-20x}{(-x)^2 - 25} = \frac{-20x}{x^2 - 25} = -f(x)^{\checkmark} = > G_f \text{ ist punktsym. zum Ursprung}$$

$$f(x) = 0 \Leftrightarrow x = 0$$
 (ist einzige Nullstelle) $\sqrt{}$

3 Asymptoten:

Senkrecht:
$$x = -5$$
; $x = 5 \checkmark$ Waagrecht: $y = 0 \checkmark$

b)
$$f'(x) = \frac{\left(20 \cdot (x^2 - 25) - (20x) \cdot (2x)\right)}{(x^2 - 25)^2} = \frac{\left(20x^2 - 500 - 40x^2\right)}{(x^2 - 25)^2} = \frac{\left(-500 - 20x^2\right)}{(x^2 - 25)^2} \checkmark$$
 $f'(x) < 0$ für alle $x \in \mathbb{R} \setminus \{-5; 5\}$, da $x^2 \ge 0$ für alle $x \in \mathbb{R}$ und somit der Zähler für $x \in D_f$ negativ und

der Nenner für $x \in D_f$ positiv sind. \checkmark

$$f'(0) = -\frac{500}{25^2} = -\frac{4}{5} = m = \frac{\Delta y}{\Delta x} = \tan \alpha$$
 => $\alpha = \arctan(-\frac{4}{5}) \approx -38,66^{\circ}$ $\sqrt{}$

$$\alpha = \arctan(-\frac{4}{5}) \approx -38,66^{\circ} \sqrt{}$$

- c) Skizze (rot=) => $\sqrt{\sqrt{}}$
- d) geg.: $f^*: x \mapsto f(x)$ mit $D_{f^*} =]5; +\infty[$ f ist in D_f nicht umkehrbar, da es z.B. ein $x_1 \in]-5$; 0[und ein $x_2 \in]5$; $+\infty[$ gibt mit $f(x_1) = f(x_2).$ $\sqrt{ }$ Der Graph von f^* ist in D_{f^*} stetig und streng monoton fallend (weil f'(x) < 0 für alle $x \in R$). Daher ist f^* umkehrbar. Graph G_{f^*} (grün) => $\sqrt{\sqrt{}}$
- e) $A(s) = \int_{10}^{s} f(x) dx = \int_{10}^{s} \frac{20x}{x^2 25} dx \sqrt{\frac{1}{2}}$ $= [10 \cdot \ln(x^2 - 25)]_{10}^s \sqrt{\sqrt{y}}$ $= 10 \cdot \ln(s^2 - 25) - 10 \cdot \ln 75 = 10 \cdot \ln \frac{s^2 - 25}{75}$
- f) A(s) = 100 $\ln \frac{s^2 - 25}{75} = 10 \sqrt{}$ $\frac{s^2 - 25}{75} = e^{10}$ $s^2 = 75 \cdot e^{10} + 25$ $s = \sqrt{75e^{10} + 25}$ (negative Lösung scheidet aus, da s > 10) $\sqrt{}$
- g) $\lim_{s \to +\infty} A(s) = 10 \cdot \lim_{s \to +\infty} \left(\ln \frac{s^2 + 25}{75} \right) = +\infty \quad \checkmark \checkmark$

2.
$$t(x) = \frac{10}{x+5} + \frac{10}{x-5}$$

 $t=\frac{s}{v}$.

2.
$$t(x) = \frac{10}{x+5} + \frac{10}{x-5}$$

a) $t(10) = \frac{10}{15} + \frac{10}{5} = \frac{8}{3}$ [Stunden] \Rightarrow $t_{10} = 160 \ min \ \checkmark$
 $t(20) = \frac{10}{25} + \frac{10}{15} = \frac{16}{15}$ [Stunden] \Rightarrow $t_{20} = 64 \ min \ \checkmark$

b) Es gilt:
$$v = \frac{s}{t}$$

Bewegt sich ein Körper mit der konstanten Geschwindigkeit v, so benötigt er für die Strecke s die Zeit

Bezüglich des Ufers beträgt die Geschwindigkeit des Bootes flussabwärts
$$(x+5)\frac{km}{h}$$
 und flussaufwärts $(x-5)\frac{km}{h}$.

Also benötigt das Boot flussabwärts die Zeit
$$t_{ab}=\frac{10km}{(x+5)\frac{km}{h}}=\frac{10}{x+5}~h$$
 und flussaufwärts die Zeit

$$t_{auf} = \frac{10km}{(x-5)\frac{km}{h}} = \frac{10}{x-5} h.$$
 \checkmark

c) Für
$$0 < x < 5$$
 bewegt sich das Boot langsamer als das Wasser. D.h., das Boot bewegt sich immer flussabwärts. Es kehrt nie zum Ausgangspunkt zurück. Der Wert des Terms ist aber endlich. $\sqrt{\ }$

d)
$$t(x) = \frac{10}{x+5} + \frac{10}{x-5} = \frac{10 \cdot (x-5)}{(x+5) \cdot (x-5)} + \frac{10 \cdot (x+5) \checkmark}{(x-5) \cdot (x+5)} = \frac{10x-50+10x+50}{x^2-25} = \frac{20x}{x^2-25} = f(x)$$

e) Die Fahrtzeit in Stunden entspricht dem y-Wert. Man sucht nun für diesen y-Wert den zugehörigen x-Wert (wobei
$$x > 5$$
 gelten muss). Dieser x-Wert entspricht der Geschwindigkeit in $\frac{km}{h}$.

$$t(x) = 4$$

$$t(x) = 4$$

$$\frac{20x}{x^2 - 25} = 4 \quad \checkmark$$

$$20x = 4x^2 - 100$$

$$4x^2 - 20x - 100 = 0$$

$$x_{1/2} = \frac{20 \pm \sqrt{20^2 - 4 \cdot 4 \cdot (-100)}}{2 \cdot 4} = \frac{20 \pm 20 \sqrt{5}}{8}$$
 (negative Lösung scheidet wegen $x > 5$ aus)

Fahrtzeit:
$$x = \frac{20+20}{9}$$

Fahrtzeit:
$$x = \frac{20 + 20\sqrt{5}}{8} \approx 8.1 \left[\frac{km}{h}\right] \checkmark$$

Stochastik

Aufgabenteil 2

Teil A

1.

a) 3 Möglichkeiten:

1 rote und 4 weiße

2 rote und 3 weiße

3 rote und 2 weiße //

(r weg, w dazu) $(2 \cdot 2 = 4 \text{ Möglichkeiten})$ (r weg, r dazu oder w weg, w dazu) $(2 \cdot 4 + 3 \cdot 3 = 17 \text{ Möglichkeiten})$ (w weg, r dazu) $(3 \cdot 3 = 9 \text{ Möglichkeiten})$

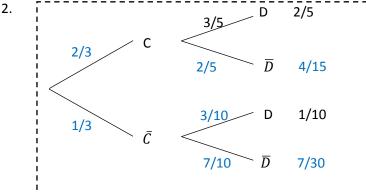
b) E: "3 weiße K. in Urne A"

Insgesamt gibt es $5 \cdot 6 = 30^{\text{V}}$ verschiedene (gleich wahrscheinliche) Möglichkeiten, das Zufallsexperiment durchzuführen.

Es gibt $2 \cdot 4 + 3 \cdot 3 = 17$, Möglichkeiten, am Ende 2 rote und 3 weiße Kugeln in der Urne A zu finden.

$$\Rightarrow P(E) = \frac{17}{30}$$

$$=> P(\bar{E}) = 1 - \frac{17}{30} = \frac{14}{30} < P(E)$$



a)
$$P(\overline{D}) = 1 - P(D) = 1 - \left(\frac{2}{5} + \frac{1}{10}\right) = 1 - \frac{5}{10} = \frac{1}{2}$$

$$P(D) = 1 - P(\overline{D}) = \frac{1}{2} \neq \frac{3}{5} = P_C(D) \checkmark \checkmark$$

Also sind die Ereignisse C und D voneinander abhängig

c) Es muss gelten: $P(D) = \frac{3}{5}$

$$P(D) = \frac{3}{5}$$

$$\Rightarrow \frac{2}{5} + P(\bar{C} \cap D) = \frac{3}{5}$$

$$\Rightarrow P(\bar{C} \cap D) = \frac{1}{5} \sqrt{\sqrt{}}$$

Teil B

1.

a) $200 \cdot 199 \cdot 198 \cdot 197 \cdot 196$ = Anzahl der Möglichkeiten, für ein Päckchen 5 verschiedene Bilder auszuwählen $\sqrt{}$

 $|\Omega|=200^5$ = Anzahl der Möglichkeiten, für ein Päckchen 5 Bilder auszuwählen, die sich nicht unbedingt unterscheiden müssen /

$$P = \frac{\text{"günstige Ergebnisse"}}{\text{"m\"{o}gliche Ergebnisse"}}$$

- b) $P("nur vorhandene Bilder") = \left(\frac{185}{200}\right)^{10} \approx 45.9 \%$ \checkmark \checkmark
- c) Zufallsvariable M: Anzahl der erhaltenen 3-D Bilder p=0.1

$$P_{0,1}^{n}(M \ge 1) = 1 - P_{0,1}^{n}(M = 0) \checkmark$$

$$1 - P_{0,1}^{n}(M = 0) > 0.99 \checkmark$$

$$P_{0,1}^{n}(M = 0) < 0.01$$

$$\binom{n}{0} \cdot 0.1^{0} \cdot 0.9^{n} < 0.01 \checkmark$$

$$0.9^{n} < 0.01$$

$$n \cdot \ln 0.9 < \ln 0.01$$

$$n > \frac{\ln 0.01}{\ln 0.9} \approx 43.7 \checkmark$$

Das Kind muss mind. 44 Bilder "ziehen".

$$44:5 = 8.8$$

Das Kind benötigt mind. 9 Packungen. $\sqrt{}$

3.

a) 5 Sektoren

$$1 + 2 + 3 + 4 + 5 = 15$$

 $360^{\circ}: 15 = 24^{\circ}$

$$P("Eintrittskarte") = P(5) = \frac{5 \cdot 24^{\circ}}{360^{\circ}} = \frac{5}{15} = \frac{1}{3} \checkmark \checkmark$$

b)
$$E(X) = 1 \cdot \frac{1}{15} + 2 \cdot \frac{2}{15} + 3 \cdot \frac{3}{15} + 4 \cdot \frac{4}{15} + 15 \cdot \frac{5\sqrt{15}}{15} = \frac{1+4+9+16+75}{15} = \frac{105}{15} = 7$$
 [€]

Das Spiel ist ungünstig für den Supermarkt. Auf lange Sicht macht der Supermarkt pro Spieldurchgang durchschnittlich 1€ Verlust. ✓

c)
$$E_{neu}(X) = \frac{1+4+9+16+10\cdot 5}{15} = \frac{80}{15} = 5\frac{1}{3}$$
 \checkmark

=> pro Spiel macht der Supermarkt im Schnitt einen Gewinn von $\frac{2}{3}$ € \approx 0,67 € $\sqrt{}$

=> bei 6000 Spieldurchgängen ergibt das einen zu erwartenden Gewinn von $\frac{2}{3}$ € · 6000 = 4000 € $\sqrt{}$